Saturday, March 21, 2009

Diamond

Diamond

In mineralogy, diamond is the allotrope of carbon where the carbon atoms are arranged in an isometric-hexoctahedral crystal lattice. After graphite, diamond is the second most stable form of carbon. Its hardness and high dispersion of light make it useful for industrial applications and jewelry. It is the hardest known naturally occurring mineral. It is possible to treat regular diamonds under a combination of high pressure and high temperature to produce diamonds that are harder than the diamonds used in hardness gauges.

Diamonds are specifically renowned as a material with superlative physical qualities; they make excellent abrasives because few substances can scratch them. As a result they hold a polish extremely well and retain their lustre. Approximately 130 million carats (26,000 kg (57,000 lb)) are mined annually, with a total value of nearly USD $9 billion, and about 100,000 kg (220,000 lb) are synthesized annually.

History

Diamonds have been treasured as gemstones since their use as religious icons in ancient India. Their usage in engraving tools also dates to early human history. Popularity of diamonds has risen since the 19th century because of increased supply, improved cutting and polishing techniques, growth in the world economy, and innovative and successful advertising campaigns. They are commonly judged by the “four Cs”: carat, clarity, color, and cut.

Diamonds are thought to have been first recognized and mined in India, where significant alluvial deposits of the stone could then be found many centuries ago along the rivers Penner, Krishna and Godavari. Diamonds have been known in India for at least 3000 years but most likely 6000 years.

The name diamond is derived from the ancient Greek, "unbreakable, untamed", "I overpower, I tame", and is the real-world origin of myths about a superhard metal called adamant.

In 1813, Humphry Davy used a lens to concentrate the rays of the sun on a diamond in an atmosphere of oxygen, and showed that the only product of the combustion was carbon dioxide, proving that diamond is composed of carbon. Later, he showed that in an atmosphere devoid of oxygen, diamond is converted to graphite.

The most familiar usage of diamonds today is as gemstones used for adornment, a usage which dates back into antiquity. The dispersion of white light into spectral colors, is the primary gemological characteristic of gem diamonds.

In the twentieth century, experts in the field of gemology have developed methods of grading diamonds and other gemstones based on the characteristics most important to their value as a gem. Four characteristics, known informally as the four Cs, are now commonly used as the basic descriptors of diamonds: these are carat, cut, color, and clarity.

Material properties

A diamond is a transparent crystal of tetrahedrally bonded carbon atoms (sp3) that crystallizes into the face centered cubic diamond lattice structure. Diamonds have been adapted for many uses because of the material's exceptional physical characteristics. Most notable are its extreme hardness, its high dispersion index, and extremely high thermal conductivity (900 – 2320 W/m K). Above 1700 °C (1973 K / 3583 °F), diamond is converted to graphite.[9] Naturally occurring diamonds have a density ranging from 3.15 to 3.53 g/cm³, with very pure diamond typically extremely close to 3.52 g/cm³.

Hardness

Diamond is the hardest natural material known, where hardness is defined as resistance to scratching. Diamond has a hardness of 10 (hardest) on Mohs scale of mineral hardness. Diamond's hardness has been known since antiquity, and is the source of its name.

The hardest diamonds in the world are from the Copeton and Bingara fields located in the New England area in New South Wales, Australia. They were called can-ni-fare (cannot be cut) by the Cutters in Antwerpt, when they started to arrive in quantity, from Australia in the 1870s. These diamonds are generally small, perfect to semiperfect octahedra, and are used to polish other diamonds. Their hardness is considered to be a product of the crystal growth form, which is single stage growth crystal. Most other diamonds show more evidence of multiple growth stages, which produce inclusions, flaws, and defect planes in the crystal lattice, all of which affect their hardness.

The hardness of diamonds contributes to its suitability as a gemstone. Because it can only be scratched by other diamonds, it maintains its polish extremely well. Unlike many other gems, it is well-suited to daily wear because of its resistance to scratching—perhaps contributing to its popularity as the preferred gem in engagement or wedding rings, which are often worn every day.

Industrial use of diamonds has historically been associated with their hardness; this property makes diamond the ideal material for cutting and grinding tools. As the hardest known naturally-occurring material, diamond can be used to polish, cut, or wear away any material, including other diamonds. Common industrial adaptations of this ability include diamond-tipped drill bits and saws, and the use of diamond powder as an abrasive. Less expensive industrial-grade diamonds, known as bort, with more flaws and poorer color than gems, are used for such purposes.

Diamond is not suitable for machining ferrous alloys at high speeds as carbon is soluble in iron at the high temperatures created by high-speed machining, leading to greatly increased wear on diamond tools when compared to alternatives.

These substances can scratch diamond:

* Some diamonds are harder than others.
* boron nitride
* Borazon - a boron nitride allotrope
* Rhenium diboride
* Hexagonal form of diamond called lonsdaleite, is theoretically predicted to be 58% stronger than diamond.
* Aggregated diamond nanorods, a material produced by high-pressure high-temperature treatment of fullerite (C60).

No comments: